Research Units

Unit I. Morphogenesis and Cell Polarity


Cells come in different shapes and sizes. Think, for instance, about the shape of a red blood cell or a neuron. Cell shape relies on a tight regulation of intracellular mechanics and the cell's physical interaction with its environment. A close relationship between structure and function is maintained at all levels of biological organization, from molecules to organisms. Tissue specialization in animals and plants is the consequence of cell morphology, which depends on protein composition and gene expression. Even tiny microorganisms show enormous morphological diversity that changes during development and differentiation.

Researchers in this unit study the molecular mechanisms that control morphogenesis in yeast and fungi. These organisms can be genetically manipulated very easily, and their relatively simple structure allows the direct visualization of the impact of such manipulations on cell morphology. Accordingly, in addition to their basic interest, these studies can potentially be of great value in applied research, because their findings allow the rapid identification of the molecular mechanisms involved in certain diseases, together with the identification of new molecular targets for antifungal drugs.

Unit II. Genome Dynamics and Epigenetics


The genome contains all the instructions for the development and reproduction of all living organisms. One of the fundamental processes during cell division is duplication of the genome, which preserves the identity of the daughter cells and maintains the species generation after generation. Another essential process in genome biology is gene transcription to allow the development of the organism and its adaptive responses to environmental changes. Finally, genome recombination is important in the repair of DNA lesions from endogenous and exogenous sources and for allowing the generation of genetic diversity, in which natural selection acts to select the best adapted organisms.

The research groups in this unit study the functional relationships between these three processes—replication, transcription and recombination—at genetic and epigenetic level. The epigenetic mechanisms are mediated by histone and DNA modifications that do not affect the nucleotide sequence but that are maintained during cell division and differentiation. In these studies, researchers use a combination of genetic, biochemical, and genomic approaches in model systems, including yeast, mouse, and human cells.

Unit III. Gene Regulation and Cell Differentiation


Gene expression is regulated by molecular mechanisms that guarantee the development, adaptation, and survival of the organism to environmental changes. Different types of RNA and various proteins regulate the processes of gene transcription and mRNA translation to generate proteins. In addition, mRNA and protein degradation also plays a key role in regulating the function of the genome. Knowing the precise structure and function of these biomolecules, how their activity is regulated, and the role of the different macromolecular complexes is fundamental to understanding the basic biological processes that establish the patterns of growth, division, and differentiation. Sometimes, these processes can go wrong, producing alterations in the development of the organism or disease.

The researchers in this unit study these basic biological functions in microorganisms (bacteria, yeast, fungi) and in animal cells (C. elegans, mouse, and human).